
Detection of Clones in Sparse and Dense Data Sets
Using Efficient Data Mining Techniques

: A Comparative Study

Puli Manjeera#, Panuganti.Ravi*

#Department of CSE, Chaitanya Engineering College, Visakhapatnam.
*Senior Assistant Professor, Department of CSE, Chaitanya Engineering College, Visakhapatnam.

Abstract-- Code clones are similar program structures
recurring in variant forms in software system(s). Several
techniques have been proposed to discover simple clones i.e.,
method level clones. But identifying structural clones has been
a difficult task because this requires am iterative scan of the
database. Structural clones show a bigger picture of simple
clones. Hence identification of the structural level clones
improves the performance of the system under development
by enhancing the properties like reusability, maintainability
and re-engineering. So to identify the structural clones a
number of approaches have been developed but the efficiency
of those algorithms are less. Hence in this paper we would like
to propose two different techniques one for association mining
and one for clustering to identify the structural clones. The
proposed technique would not only scan sparse data but also
dense data to identify the clones. We also try to detect exact
and near miss clones. The techniques used would be mining
frequent patterns using prefix trees and an efficient density
based clustering algorithm. At last we make a comparison
between the existing method and the one proposed in this
paper.

Keywords--structural Clones, FP-Tree, Re-use, Maintenance.

I. INTRODUCTION
 Code clones are similar program structures of
considerable size and significant similarity. In large scale
systems many projects are developed in parallel and the
code related to those projects are stored in a centralized
system which consists of duplicated data at different levels.
The information obtained from previous sources shows that
30 to 40% [2][3][4] of the code obtained from large scale
systems consists of clones. Hence identifying these clones
would reduce rework and would be useful for re-
engineering and maintenance. Code duplication is easy but
it makes software maintenance more complicated.
 Simple clone detectors usually detect clones larger
than a certain threshold (e.g., clones longer than 5 LOC).
Higher thresholds risk false negatives, while lower
thresholds detect too many false positives. In comparison,
Clone Miner can afford to have a lower threshold for
simple clones, than a stand-alone simple clone detector,
without returning too many false positives. This is because
it can use the grouping as a secondary filter criterion, to
filter out small clones that do not contribute to structural
clones. These small simple clones may just be noise when
considered individually, but when they are combined to
form structural clones, they can indicate bigger cloned
entities.

 Previous clone detection [1] work was only
limited to textual matches or near misses only on complete
function bodies. Whereas this paper presents some practical
methods for detecting exact and near miss clones for
arbitrary fragments of program source code. And also the
current clone detection approaches are not scalable to very
large codes. Hence they cannot be used for real-time
detection in large systems, thereby reducing their
usefulness for clone management.
 In this paper we concentrate on seven different
levels of clones out of which some levels can be done
manually [5][6] and some levels need our approach. The
levels are as follows:
Level-1: Repeating groups of simple clones
 a) In the same method
 b) In different methods
Level-2: Repeating groups of simple clones
 a) In the same file
 b) Across different files
Level-3: Method clone sets
Level-4: Repeating groups of method clones
 a) In the same file
 b) Across different files
Level-5: File clone sets
Level-7: Repeating groups of file clones
 a) In the same directory
 b) Across different directories
Level-7: Directory clone sets.
 This can be done by using density based
Clustering and frequent item set mining without candidate
generation with the help of FP-tree algorithm [8]. The
proposed algorithms and their performance results are
given in the coming sections. We apply frequent item set
mining to levels 1b, 2b, 3, and 6b. Similarly we apply
clustering to levels 3, 5, 7. We try to detect the clones not
by their line numbers as was done in the previous paper.
Rather we take a different approach so that clones present
at different line numbers within different methods or files
are detected. We try to make this approach applicable to
any of the languages like C, C++, Java, etc.,. At last we
make a comparison between the previous method and our
method with the help of a case study.
 The remaining section is organized as follows. In
section 2, we give a procedure to identify the simple clones.
In section 3 we organize the data for further analysis. In
section 4, we briefly review about the improved FP-tree
method and discuss about the algorithm and its usefulness

Puli Manjeera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5793-5796

www.ijcsit.com 5793

in clone detection. In section 5, we introduce effective
density based clustering technique and its algorithm to
search for clones at the directory level. Section 5, is
dedicated to the results obtained by applying our technique
to a particular project and making a comparative study.
And at last reference papers that have helped in guiding this
paper are listed.

II. DETECTION OF SIMPLE CLONES USING LEXICAL

ANALYSIS
 We Consider a clone detector which is based on
parsing or lexical analysis. The information can be obtained
directly, otherwise we can deploy program analysis to
obtain this information. This tool uses Repeated Tokens
Finder (RTF), a token-based simple clone detector, as the
default front-end tool [6]. RTF tokenizes the input source
code into a token string, from which a suffix array based
string-matching algorithm directly computes the SCSets,
instead of computing them from the clone pairs. RTF
currently supports Java, C++, Perl, and VB.net. RTF also
performs some simple parsing to detect method and
function-boundaries.

III. RE-ORGANIZING THE DATA OBTAINED
 Once the data about the simple clones is obtained
they need to be organized in a way such that the data can be
used for further analysis like mining and clustering to find
out structural clones. We list simple clones for each method
or file, depending on the analysis level. We need to check
the function boundaries while performing the analysis.
With this arrangement of simple clones, we get a different
view of the simple clones’ data, with simple clones
arranged in terms of methods or files. A sample of this
format is shown in Fig. 1. The first data row means that the
file No. 10 contains three instances of SCSet 9 and one
instance each of SCSets 15, 28, 38, and 40. The
interpretation is likewise for the other rows. At this stage,
we can easily filter out methods or files that do not
participate in cloning at all (i.e., contain no simple clones).

File identifier Simple clone set instances
……. …….

10 a, b, c, e, f, o
11 a, c, g
14 a, c, d, e, g

……. …….
Fig.1. Clones per file

 From the above data we detect the groups of
simple clones in different files or different methods. With
this we have the data ready for further analysis.

IV. DETECTING REPEATING GROUPS OF SIMPLE CLONES
 To detect recurring groups of simple clones in
different files or methods, we apply the same data mining
technique that is used for “market basket analysis” [7]. The
idea behind this analysis is to find the items that are usually
purchased together by different customers from a
departmental store. The input database consists of a list of
transactions, each one containing items bought by a
customer in that transaction. The output consists of groups
of items that are most likely to be bought together. The

analogy here is that a file or a method corresponds to a
transaction and the SCSets, represented in that file or
method, correspond to the items of that transaction. Our
objective is to find all those groups of SCSets whose
instances occur together in different files or methods.
 In our data, one file or method may contain
multiple instances of the same SCSet. We could normalize
the data by removing the duplicates, but by doing so, we
would miss out important information - where multiple
instances of an SCSet are part of a valid structural clone
across files or methods. For example, we have three
instances of SCSet 9 present in both files 12 and 14 shown
in Fig. 1, so 9-9-9-15 is a valid level 2-B structural clone
across these two files. But if the data is normalized by
removing duplicates, then we would not get this complete
structural clone.
 Hence we would perform frequent closed item-set
mining where only those subsets are reported which are not
subsets of any bigger frequent itemset. The technique
proposed by us is an improved FP-Tree algorithm known as
Prefix Tree. Compared with Apriori [1] and its variants
which need several database scans, the FP-growth method
only needs two database scans when mining all frequent
itemsets. The first scan counts the number of occurrences
of each item. The second scan constructs the initial FP-tree
which contains all frequency information of the original
dataset. Mining the database then becomes mining the FP-
tree.

Fig.2. An example FP-Tree

 But the FP-Tree for a sparse data set will be big
and bushy, due to the fact that they do not have many
shared common prefixes. However for dense data sets they
are more compact. The pseudo code for our new method is
shown below in fig.3

Fig.3. Algorithm FPgrowth*

Puli Manjeera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5793-5796

www.ijcsit.com 5794

 Once this method is performed the data is once
again organized in such a way that it is suitable for further
analysis.

V. DETECTING FILE AND METHOD CLONES
 Higher level clones cannot be identified using the
above approach. Hence we perform an efficient clustering
algorithm on the above obtained data and detect directory
level and file level clones. Clustering is a process of
grouping the data objects into classes so that data objects
within a class are highly similar to one another but
dissimilar to data objects in other class based on attribute
values describing these data objects.
 To discover clusters with arbitrary shape, we use
density-based clustering method. We have used the
DBScan method for this purpose. DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) is a
density based clustering algorithm. The algorithm grows
regions with sufficiently high density into clusters and
discovers clusters of arbitrary shape in spatial databases
with noise.
 It defines a cluster as a maximal set of density-
connected points. Consider Fig.4 for a given e represented
by the radius of the circles, and, say, let MinPts = 3.
DBSCAN searches for clusters by checking the e-
neighborhood of each point in the database. If the e-
neighborhood of a point p contains more than MinPts, a
new cluster with p as a core object is created. DBSCAN
then iteratively collects directly density-reachable objects
from these core objects, which may involve the merge of a
few density-reachable clusters. The process terminates
when no new point can be added to any cluster.

Fig.4. Density reach ability and density connectivity in

density-based clustering.

 So based on this methodology both the above
mentioned methods are applied iteratively one after the
other until all the clones are detected.

VI. IMPLEMENTATION OF THE TOOL
 We have successfully applied the methodology on
a Buffer and Buffer class systems as shown below with the
details.

TABLE-I
 BUFFER BUFFER CLASS

No. of files 5,310 2,010
LOC 2,34,567 1,23,787

No. of directories 209 336
No. of methods --- 8,581

 The results obtained in the previous system and
that of our system is shown below.

TABLE-II (Previous System)

MINCOVER
SUPPORT-

50%
SUPPORT-

90%
No. of groups 283 186
No. of Mc sets covered 153 107
% of MC sets covered 51.5% 47%
Methods covered by groups 1,417 1,075
% of Methods covered by groups 17% 13%
Min. no. of methods in a group 2 2
Max. no. of methods in a group 192 180
Avg. no. of methods in a group 39 46

TABLE-III (Proposed System)

MINCOVER
SUPPORT-

50%
SUPPORT-

90%
No. of groups 301 234
No. of Mc sets covered 180 123
% of MC sets covered 59.8% 52.56%
Methods covered by groups 1,501 1,211
% of Methods covered by groups 19% 15%
Min. no. of methods in a group 2 2
Max. no. of methods in a group 201 185
Avg. no. of methods in a group 45 51

VII. CONCLUSION
 In this paper we emphasized on higher level
cloning. The process is started by finding simple clones
(that is, similar code fragments). Increasingly higher-level
similarities are then found incrementally using data mining
techniques of finding frequent closed item sets, and
clustering. We believe our technique is both scalable and
useful. In this paper we have tried to improve the efficiency
of the system by using efficient data mining techniques.
Implementing good visualizations for higher-level
similarities is also an important part of our work. We have
tried to identify the clones based on their addresses and not
on their physical locations and we have tries to cater this
technique to various languages.

ACKNOWLEDGEMENTS
 We would wish to thank our Head of the
Department and the other faculty members who have
helped us for this paper. I would also like to thank the
selection committee who has reviewed this paper.

Puli Manjeera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5793-5796

www.ijcsit.com 5795

REFERENCES
[1] Kozaczynski, W., Ning, J. and Engberts, A. Program concept

recognition and transformation. IEEE Transactions on Software
Engineering, 18(12):1,065-1,075, December 1992.

[2] Baker, B. S. On finding duplication and near-duplication in large
software systems. In Proceedings of the 2nd Working Conference on
Reverse Engineering (WCRE), pages 86-95, 1995.

[3] Ducasse, S, Rieger, M., and Demeyer, S. A language independent
approach for detecting duplicated code. In Proceedings of the
International Conference on Software Maintenance (ICSM), pages
109-118, 1999.

[4] Mayrand J., Leblanc C., Merlo E. Experiment on the automatic
detection of function clones in a software system using metrics. In
Proceedings of the International Conference on Software
Maintenance (ICSM), pages 244-254, 1996.

[5] Krine, J. Identifying similar code with program dependence graphs.
In Proceedings of the Eight Working Conference on Reverse
Engineering (WCRE), pages 301-309. Stuttgart, Germany, October
2001.

[6] Koschke, R., Falke, R., and Frenzel, P. Clone Detection Using
Abstract Syntax Suffix Trees. In Proceedings of the 13th Working
Conference on Reverse Engineering (WCRE), pages 253-262, 2006.

[7] Kamiya, T., Kusumoto, S, and Inoue, K. CCFinder: A multilinguistic
token-based code clone detection system for large scale source code.
IEEE Transactions on Software Engineering, 28(7):654 – 670, July
2002.

[8] Rieger, M. Effective Clone Detection without Language Barriers.
Ph.D. Thesis, University of Bern, 2005.

[9] Basit, H. A., Puglisi, S., Smyth, W., Turpin, A., and Jarzabek, S.
Efficient token based clone detection with flexible tokenization. In
Proceedings of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC-FSE), pages 513-516, September 2007.

[10] Han, J., and Kamber, M., Data Mining: Concepts and Techniques,
Morgan Kaufman Publishers, 2001.

Puli Manjeera et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (4) , 2014, 5793-5796

www.ijcsit.com 5796

